Experiments and Numerical Simulation of Deflagration-to-Detonation Transition and Detonations in Gaseous and Two-Phase Systems Sergey M. Frolov

> N.N. Semenov Institute of Chemical Physics RAS Center for Pulsed Detonation Combustion Moscow

> > *ECM-2013, Lund, Sweden June 27, 2013*

Outline

- Motivation
- Fast DDT concept
- Pulsed detonations
 - natural-gas pulsed detonation burner
 - PDE for orbit correction
 - estimation of PDE ramjet flight performances
- Continuous detonations
 - hydrogen-fueled continuous detonation chamber with nonpremixed fuel and air
- Conclusions

Motivation

Deflagration vs. Detonation (I)

Deflagration vs. Detonation (II)

en en all'Apple en la subjection de la grafficia de la constructión de la construcción de la construcción de la Antenna de la construcción de la co Antenna de la construcción de la co Antenna de la construcción de la co

1940 2.

1940

ЖУРНАЛ ТЕХНИЧЕСКОЙ ФИЗИКИ Том Х, вып. 17

JOURNAL OF TECHNICAL PHYSICS Vol. X, No 17

К ВОПРОСУ ОБ ЭНЕРГЕТИЧЕСКОМ ИСПОЛЬЗОВАНИИ ДЕТОНАЦИОННОГО ГОРЕНИЯ

Я.Б. Зельдович

При детонационном горении¹ взрывчатых газовых смесей в момент, непосредственно следующий за прохождением детонационной волны (протеканием химической резкция), продукты горения оказываются в состоянии (назовем его "состояние D"), весьма богатом энергией тепловой и кинетической (поступательного движения).

Классическая термодинамическая теория Жуге позволяет вычислить, в предположении отсутствия потерь, "состояние D" продуктов горения. Получаемое одновременно в таком расчете значение скорости распространения детонации находится в хорошем согласии с опытом, подтверждая правильность термодинамической теории как предельного случая в отсутствии потерь.

Расчет дает для продуктов горения в детонационной волне: плотность — в $2 \div 1.7$ раза больше плотности начальной смеси (приблизительно в k + 1/k раза, где k показатель аднабаты $pv^{t} = \text{const}$ для продуктов горения);

 $\eta_{Detonation} > \eta_{V=const} > \eta_{P=const}$

Steady-State Combustion Modes

Example: Thermodynamic efficiency of ramjets

• Theoretical gain in efficiency – up to 30% at M = 2.5– up to 20% at M = 3.0 Is it feasible to realize efficient detonation (Zel'dovich) cycle?

Two variants of operation process:

Intermittent (pulsed) detonation modeContinuous (rotating) detonation mode

Intermittent (pulsed) detonations: Physical principles

Operation cycle

Bussing (~1991)

Continuous (rotating) detonations: Physical principles Continuous detonation

СТАЦИОНАРНАЯ ДЕТОНАЦИЯ

Б. В. ВОЙЦЕХОВСКИЙ

(Представлено академиком М. А. Лаврентьевым 14 1Х 1959)

YOFOF ST SALE BURNERS

болеми. СССА Доклахы Академии наук СССР. BOOMLOW DUNCTIONS SOCIED MED 1959. Tox 129, Nº 6 THE DEPENDEN

enperation is routioned C otherconnects (dominant f (2)

В связи с большой скоростью распространения детонационной волны, обычно достигающей нескольких километров в секунду, явление детонации принято рассматривать как миллимикросекундный процесс.

Если в каком-либо канале создать условия, в которых исходная газовая смесь с достаточной скоростью непрерывно восполняется перед фронтом детонационной волны, то явление может быть переведено в стационарное

Рис. 1. Принципиальная схема

состояние. Принципиальная схема установки, в которой была получена стационарная детонация, изображена на рис. 1.

Фронт детонационной волны постоянно распространяется в одном направлении вдольокружности кольцевого канала 1. В радиальном направлении через внутреннюю стенку в. канал поступает исходная газовая смесь. Продукты детонации удаляются из канала через противоположную стенку. Фотографирование детонации в кольце осуществляется через стекло, представляющее собой верхнюю стенку канала. После прохождения фронта детонационной волны мимо одной из точек кольца сгоревшая смесь немедленно начинает оттесняться вновь поступающей исходной смесью, которая занимает область кольцевого клина с вершиной за фронтом и с основанием, совпадающим с тем же фронтом в случае одно-

B. V. Voitsekhovskii

Center for Pulsed Detonation Combustion at Semenov Institute of Chemical Physics

General objective

Development of scientific grounds for the design of advanced pulse and continuous detonation combustors for power engineering and propulsion applications

Standard DDT scenario

Fast (controlled) DDT scenario

Idea

No matter how energy is deposited in the shock induced flow:

- spontaneously due to shock induced chemical reactions (strong shocks)

or

- by external stimulation of chemical activity (continuous or pulsed flow activation) **Initiation of gas detonation by traveling (coherent) ignition pulse**

1D simulation

Frolov et al (2001)

Time – Distance Diagram

Experiment: *n***-heptane**–air

Frolov et al (2002)

Detonation peninsula d = 51 mm

Two igniters

Detonation peninsula

d = 28 mm

From traveling ignition pulse to curved tubes

Tube loop

Frolov et al (2005)

Tube U-bends

Frolov et al (2006)

2D simulation

Propane – air (st.)

Movie skipped because of large size

Experiment: propane-air (st.)

Experiment: propane-air (st.)

(readily obtained in obstructed tubes)

Detonation of aviation kerosene in air

Experimental setup

Curved tube section

Shchelkin spiral + straight tube

Provided solely by Shchelkin spiral

Shchelkin spiral + curved tube

Frolov et al (2006)
From curved tubes to shaped obstacle(s)

2D simulation

Experiment: propelene-air (st.)

Shock wave Shaped obstacles

Shock-to-Detonation transition at M = 3

Frolov et al (2007)

2D simulation (propane – air)

Tempe	rature[K]					11		\mathcal{O}	
293.15	593.84	894.52	1195.2	1495.9	1796.6	2097.3	2397.9	2698.6	2999.3	3300
Absolut	tePressi	ure[Pa]	1				1		14	
1e+005		1.28e+006		2.46e+006		3.64e+006	3	4.82e+00	3	6e+006

Detonation onset due to shock focusing

Experiment: aviation kerosene – air

Frolov et al (2008)

Fast DDT: Natural-gas fueled pulse detonation burner for power engineering

Objectives

- Develop scientific grounds for the design of industrial high-intensity pulsed-detonation burners operating on natural gas
- **Design, fabricate and test** the natural-gas fueled pulsed detonation burner

Implications:

- **Fast DDT concept**: The best obstacle configuration for DDT should provide the fastest growth of flame surface area (flame acceleration) and the lowest momentum loss for the arising shock wave (shock amplification)
- Optimum obstacles' shaping and positioning

Cyclic DDT

Soot print

← Spinning detonation

100mm

10 successive cycles

Thermal mode

Measuring tools and test duration

- ADC
- Sampling frequency 10 Hz
- . Thermocouples K
- Error <3 °C
- . Thermal imager Testo
- Test duration with frequency 1.8 Hz: <u>300 s</u>

Temperature of obstacles

Nitrogen oxides

• Gas Analyzer TESTO-335 (Testo AG, Germany)

RUN	Medium	NO _x , ppm	NO, ppm
1	Detonation products	214	204
2	of stoichiometric	193	184
3	natural gas – air mixture	221	221
Mean	value	~210	

 Available high-intensity burners operating on deflagration: 500-700 ppm

Parameters of issuing jets:

Pulsed detonation burner vs. conventional burner

Parameter	Mes. unit	Pulsed Detonation Burner	Conventional burner
Velocity	m/s	~1000	~50–200
Temperature	K	~1600-1800	~1600-1800
Overpressure	bar	~6.0-16.0	~0.05
NOx	ppm	~200	~500-700

• Applications of PDE burners: Combined mechanical and thermal action of detonation products

Heating furnaces in metallurgy

Requirements

- High productivity;
- High quality of heating in terms of metal structure and mechanical properties, the degree of oxidation and decarbonization;
- Natural gas as a fuel;
- Air as oxidizer;
- Fuel efficiency;
- Low pollutant emissions;
- Automatic control of operation modes, etc.

Standard flame furnace

- High speed of issuing jet
- High heating uniformity
- Minimum heat loss to furnace walls
- Low-oxidation heating
- Low NOx

Fast DDT: Liquid-propellant pulse detonation rocket engine for orbit correction

Engines for orbit correction

- low specific impulse (140-160 s)
- pulse mode

Pulse detonation rocket engine (mini rocket PDE)?

Objectives

Formulate the **concept of the future micro rocket PDE** for the stabilization system and orbit displacement of the satellites based on the experimental realization of

- calibrated pulse detonation cycles (thrust bits) (digitally controlled up to 200 Hz)
- in drop mixtures of liquid hydrocarbon fuel with gaseous oxygen
- in short tubes of small diameter

Pulse detonation rocket engine demonstrator

Pulse operation mode

- calibrated thrust bits
- high specific impulse
- no cooling

up to *f* ~ 200 Hz (in vacuum) *D* ~ 2200 m/s Fast DDT: Propulsive performance of air-breathing valved pulse detonation engine at Mach 0.8 to 5.0 flight conditions

PDE schematic (Mach 3)

PDE dimensions

Flight and operation conditions

Flight Mach number3Flight altitude8-28 kmFuelpropane ($\Phi = 1.0; 0.7$)

Numerical approach

- 3D URANS equations
- Turbulence model (k-epsilon)
- Multicomponent reactive mixture
- Ideal-gas thermal and calorific equations of state
- Flame Tracking Particle turbulent combustion model with micromixing

flame fresh mixture

Movies skipped because of large size

PDE cycles (M = 3)

Specific impulse

PDE specific impulse (M = 3)

Propulsive performance (M = 3)

Z, km	f, Hz	l _{sp} , S	R, kN/(kg/s)	SFC, kg/(N-h)
20	50	1655 (1800)	1.05 (1.15)	0.22 (0.20)
26	49	1630 (1790)	1.02 (1.10)	0.22 (0.21)
		Similar to ramjet at $\Phi = 0.7$	20%-40% higher then ramjet at $\Phi = 0.7$	Similar to ramjet at $\Phi = 0.7$

PDE schematic (M = 0.8)

Dimensions and fuel

Tube diameter:	83 mm
Length:	1.3 m
Fuel:	propane

Propulsive performance (M = 0.8)

Z, km	P, MPa	Та, К	<i>f,</i> Hz	l, s
0	0.101	288.2	75	1325
0.5	0.095	284.9	70	1340
1	0.090	281.7	70	1330

PDE schematic (M = 5.0)

Dimensions and fuel

Tube diameter:	83 mm
Length:	2.2 m
Fuel:	propane

Propulsive performance (M = 5)

Z, km	P, MPa	Ta, K	<i>f</i> , Hz	Isp, S
28	0.0016	224.5	55	1620
Continuous detonations: CFD of operation process with narrow gap and with separate delivery of fuel and air

Objectives

- Validate in-house 3D CFD tool for RDE operation on nonpremixed fuel and air;
- Design the RDE compatible with the architecture of gas turbine engine

RDE operating on <u>nonpremixed</u> H₂ – air

 $\langle \cdot \rangle$

Ć

δ = 2 mm

∆ = 23 mm dc = 306 mm Lf = 2 mm

Lc =400 mm

Hydrogen

б

F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Continuous Spin Detonation of Fuel–Air Mixtures, Combustion, Explosion, and Shock Waves, Vol. 42, No. 4, pp. 463–471, 2006

Numerical approach

- 3D URANS equations
- Turbulence model (k-epsilon)
- Multicomponent reactive mixture
- Ideal-gas thermal and calorific equations of state
- Particle method for modeling micromixing and combustion

notional particles (10-50 particles in cell)

neglect frontal combustion

Test case 1: Detonation propagation in RDE

Movies skipped because of large size

Test case 1: Comparison with experiment

Calculation

Experiment

F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, Continuous Spin Detonation of Fuel–Air Mixtures, Combustion, Explosion, and Shock Waves, Vol. 42, No. 4, pp. 463–471, 2006

Detonation front propagation: horizontal cut

Pressure

Test case 1: Detonation Velocity

Transient phenomena: vertical and horizontal cuts

Transient phenomena: vertical and horizontal cuts

Transient phenomena: vertical and horizontal cuts

Test case 1: Mixing and burning: vertical cut

Velocity

 $y(H_2O)$

 $y(H_2)$

Test case 2: Mixing and burning: vertical cut

Movies skipped because of large size

Velocity

Continuous detonations: CFD of operation process with wide gap and separate delivery of fuel and air

Gas turbine engine

Total pressure gain?

Wide annual channel (25 mm)

T

P

[H2] Movies skipped because of large size

Detonation propagation

Turbine

Compressor

Temperature

y(O₂)

Movies skipped because of large size

Detonation propagation: horizontal cut

Movies skipped because of large size

Detonation vs. deflagration

• RDC with total pressure gain!

Several detonation waves

Movies skipped because of large size

Spontaneous multiplication of waves

T

Movie skipped because of large size

Heat fluxes to RDC walls

As in modern Diesel engines !

Conclusions

Based on the Fast DDT concept,

- **Pulse Detonation Burner** has been designed, fabricated and tested (currently it is under preparation for certification and serial production)
- **Micro rocket PDE demonstrator** with the digitally controlled frequency of **calibrated detonation pulses** up to 200 Hz has been produced and tested both in ambient atmosphere and in vacuum
- Feasibility of **high-performance subsonic and supersonic ramjets** operating on pulsed detonations has been proved computationally
- Efficient **computational tool** for transient 3D numerical simulation of the operation process in a Rotating Detonation Engine has been developed and validated for **separate delivery of fuel and air**
- The tool is capable of resolving various specific features of rotating detonations and solving chamber **design**, **thermal management**, **and operation control** issues